A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections
نویسنده
چکیده
Let f be a Borel measurable mapping of a Luzin (i.e. absolute Borel metric) space L onto a metric space M such that f(F ) is a Borel subset of M if F is closed in L. We show that then f−1(y) is a Kσ set for all except countably many y ∈M , that M is also Luzin, and that the Borel classes of the sets f(F ), F closed in L, are bounded by a fixed countable ordinal. This gives a converse of the classical theorem of Arsenin and Kunugui. As a particular case we get Tăımanov’s theorem saying that the image of a Luzin space under a closed continuous mapping is a Luzin space. The method is based on a parametrized version of a Hurewicz type theorem and on the use of the Jankov–von Neumann selection theorem.
منابع مشابه
The existence of Zak transform in locally compact hypergroups
Let K be a locally compact hypergroup. In this paper we initiate the concept of fundamental domain in locally compact hypergroups and then we introduce the Borel section mapping. In fact, a fundamental domain is a subset of a hypergroup K including a unique element from each cosets, and the Borel section mapping is a function which corresponds to any coset, the related unique element in the fun...
متن کاملCompact Covering Mappings between Borel Sets and the Size of Constructible Reals
We prove that the topological statement: “Any compact covering mapping between two Borel sets is inductively perfect” is equivalent to the set-theoretical statement: “ ∀α ∈ ωω , א 1 < א1”. The starting point of this work is the following topological problem: Problem. Is any compact covering mapping between two Borel spaces inductively perfect? We recall that if f : X → Y is a continuous and ont...
متن کاملStrongly meager sets and subsets of the plane
Let X ⊆ 2 . Consider the class of all Borel F ⊆ X × 2 with null vertical sections Fx, x ∈ X. We show that if for all such F and all null Z ⊆ X, ⋃ x∈Z Fx is null, then for all such F , ⋃ x∈X Fx 6= 2 . The theorem generalizes the fact that every Sierpiński set is strongly meager and was announced in [P]. A Sierpiński set is an uncountable subset of 2 which meets every null (i.e., measure zero) se...
متن کاملOn Borel Sets Belonging to Every Invariant Ccc Σ-ideal on 2n
Let Iccc be the σ-ideal of subsets of the Cantor group 2N generated by Borel sets which belong to every translation invariant σ-ideal on 2N satisfying the countable chain condition (ccc). We prove that Iccc strongly violates ccc. This generalizes a theorem of Balcerzak-Rosłanowski-Shelah stating the same for the σ-ideal on 2N generated by Borel sets B ⊆ 2N which have perfectly many pairwise dis...
متن کامل?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups
In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...
متن کامل